

Name:		
	Date:	
		Hour:

Information: Terminology

Recall that an ionic bond results from the combination of a metal and a nonmetal. A <u>covalent bond</u> is the type of bond between two nonmetals. Covalent bonds are formed by neutral atoms that share electrons rather than by charged ions. When a compound is formed by sharing electrons, the compound is called a <u>molecule</u> or molecular compound. It is important to note that ionic compounds are <u>not</u> called <u>molecules</u>. The largest class of molecules are called <u>organic molecules</u>. <u>Carbon</u> is the distinguishing mark of organic compounds.

Critical Thinking Questions

- 1. Circle any of the following compounds that would properly be called a "molecule".
 - a) H₂O
- b) CO₂
- c) NaCl
- d) Mg₃P₂
- e) N₂O₅

Information: Naming Covalent Compounds

There are several prefixes used to name molecules. The name "carbon oxide" is not sufficient because carbon and oxygen sometimes form CO_2 and sometimes CO. Prefixes are necessary to distinguish between them.

Formula	Name
N_2O_4	dinitrogen tetraoxide
SF ₆	sulfur hexafluoride
XeCl ₅	xenon pentachloride
SO_3	sulfur trioxide
СО	carbon monoxide

Critical Thinking Questions

2. Fill in the table to indicate which prefix is used to represent the numbers. The first one is done for you.

Number	Prefix
1	mono
2	
3	
4	
5	
6	

3.	Name each of the f	following molecules using	ng the appropriate	prefixes.
	a) N_2O_5	b) CF ₄	c) SCl ₃	d) SO

4. Which of the above compounds would be classified as "organic"?

Information: Empirical Formulas

Molecules can be represented by using either a <u>molecular formula</u> or an <u>empirical formula</u>. The molecular formula tells you exactly how many atoms of each element are in the compound. For example, in the table below, compound #2 has exactly 4 carbons and 8 hydrogens in each molecule. Observe the table below that shows four organic molecules along with a molecular and empirical formula for each one:

Molecule	Molecular Formula	Empirical Formula
#1	C_2H_4	CH_2
#2	C_4H_8	CH ₂
#3	C ₃ H ₈	C_3H_8
#4	C ₈ H ₁₈	C ₄ H ₉

Critical Thinking Questions

5.	What	is an	empirical	formul	la'
· .	* * 11000	is an	· ciiipiiicai	1011114	

6.	How can molecules #1 and #2 have the same empirical formula even though they are different
	molecules?

- 7. Given the empirical formula for a compound is it possible to determine the molecular formula? If so, explain how.
- 8. Given the molecular formula for a compound is it possible to determine its empirical formula? If so, explain how.

9.	Give the empirical formu	la for each of the molecules b	elow:	
	a) N_2O_6	b) $C_2H_4O_2$	c) C_4H_{14}	d) C_3H_5