KEY IS ON NEXT PAGE

Worksheet on Limiting Reactants

Use the following equation to answer questions 1-4.

$$
\mathrm{N}_{2}+\mathrm{H}_{2} \rightarrow \mathrm{NH}_{3}
$$

1. How many moles of NH_{3} can be produced from the reaction of 28 g of N_{2} ?
2. How many moles of NH_{3} can be produced from the reaction of 25 g of H_{2} ?
3. If 28 g of N_{2} and 25 g of H_{2} are reacted together, which one would be the limiting reactant?

Use the following to answer questions 5-8.

$$
\mathrm{C}_{3} \mathrm{H}_{8}+\mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}
$$

5. How many moles of water can be produced from the reaction of 28 g of $\mathrm{C}_{3} \mathrm{H}_{8}$?
6. How many moles of water can be produced from the reaction of 45 g of O_{2} ?
7. If 28 g of $\mathrm{C}_{3} \mathrm{H}_{8}$ and 45 g of O_{2} are reacted together, which one would be the limiting reactant?

Worksheet on Limiting Reactants

Use the following equation to answer questions 1-4.

$$
\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightarrow 2 \mathrm{NH}_{3}
$$

1. How many moles of NH_{3} can be produced from the reaction of 28 g of N_{2} ?
$28 \mathrm{~g} \mathrm{~N}_{2} \times \frac{1 \mathrm{~mole} \mathrm{~N}_{2}}{28 \mathrm{~g} \mathrm{~N}_{2}} \times \frac{2 \text { moles } \mathrm{NH}_{3}}{1 \text { mole } \mathrm{N}_{2}}=2$ moles NH_{3}
2. How many moles of NH_{3} can be produced from the reaction of 25 g of H_{2} ?
$25 \mathrm{~g} \mathrm{H}_{2} \times \frac{1 \text { mole } \mathrm{H}_{2}}{2 \mathrm{~g} \mathrm{H}_{2}} \quad \mathrm{X} \frac{2 \text { moles } \mathrm{NH}_{3}}{3 \text { moles } \mathrm{H}_{2}}=8.3 \mathrm{moles}^{\mathrm{NH}} \mathrm{N}_{3}$
3. If 28 g of N_{2} and 25 g of H_{2} are reacted together, which one would be the limiting reactant?
N_{2} would be the limiting reactant because it only makes 2 moles of NH_{3} before it is used up.
Use the following to answer questions 5-8.

$$
\mathrm{C}_{3} \mathrm{H}_{8}+5 \mathrm{O}_{2} \rightarrow 4 \mathrm{H}_{2} \mathrm{O}+3 \mathrm{CO}_{2}
$$

5. How many moles of water can be produced from the reaction of 28 g of $\mathrm{C}_{3} \mathrm{H}_{8}$?
$28 \mathrm{~g} \mathrm{C}_{3} \mathrm{H}_{8} \quad \mathrm{X} \frac{1 \text { mole } \mathrm{C}_{3} \mathrm{H}_{8}}{44 \mathrm{~g} \mathrm{C}_{3} \mathrm{H}_{8}} \quad \mathrm{X} \frac{4 \text { moles } \mathrm{H}_{2} \mathrm{O}}{1 \text { moles } \mathrm{C}_{3} \mathrm{H}_{8}}=2.55$ moles $\mathrm{H}_{2} \mathrm{O}$
6. How many moles of water can be produced from the reaction of 45 g of O_{2} ?
$45 \mathrm{~g} \mathrm{O}_{2} \times \frac{1 \text { mole O}_{2}}{32 \mathrm{~g} \mathrm{O}_{2}} \times \frac{4 \text { moles } \mathrm{H}_{2} \mathrm{O}}{5 \text { moles } \mathrm{O}_{2}}=1.125$ moles $\mathrm{H}_{2} \mathrm{O}$
7. If 28 g of $\mathrm{C}_{3} \mathrm{H}_{8}$ and 45 g of O_{2} are reacted together, which one would be the limiting reactant?
O_{2} would be the limiting reactant because it only makes 1.125 moles of $\mathrm{H}_{2} \mathrm{O}$ before it is used up.
