Polarity Practice Worksheet

For each of the following pairs of compounds, determine which is most polar based on their Lewis structures.

1) methyl chloride (CHCl₃) or methyl bromide (CHBr₃)

2) water or hydrogen sulfide (H₂S)

3) hydrochloric acid (HCl) or hydroiodic acid (HI)

4) bromoacetylene (C_2HBr) or chloroacetylene (C_2HCI)

5) methanol (CH₃OH) or diethyl ether [(CH₃)₂O]

6) acetone [(CH₃)₂CO] or propanol (C₃H₈O)

Polarity Practice Worksheet - Solutions

For each of the following pairs of compounds, determine which is most polar based on their Lewis structures.

1) **methyl chloride (CHCl₃)** or methyl bromide (CHBr₃)

Since chlorine is more electronegative than bromine, the molecule has a higher polarity.

2) water or hydrogen sulfide (H_2S)

Since oxygen is more electronegative than sulfur, the moelcule has a higher polarity.

3) **hydrochloric acid (HCI)** or hydroiodic acid (HI)

Chorine is more electronegative than iodine, making HCI more polar.

4) bromoacetylene (C₂HBr) or **chloroacetylene (C₂HCl)**

Chlorine is more electronegative than bromine, making chloroacetylene more polar.

5) **methanol (CH₃OH)** or diethyl ether $[(CH_3)_2O]$

Since diethyl ether has the oxygen at the middle of the molecule rather than on the end, it is far less polar than methanol.

6) **acetone [(CH₃)₂CO]** or propanol (C₃H₈O)

A quick look at the Lewis structures of this molecule should convince you that acetone is far more polar, as the molecule appears more unbalanced.