LT 7.2 Percent Yield Practice

1. Calculate the percent yields in each of the following cases:
a. Theoretical yield 50.0 g of product; actual yield 41.9 g
b. Theoretical yield is 290 kg of product; actual yield is 270 kg
c. Theoretical yield is 64 kg of product; actual yield is 324 g
2.

$$
\mathrm{HgO}+\mathrm{Cl}_{2}-\cdots \mathrm{HgCl}_{2}+\mathrm{Cl}_{2} \mathrm{O}
$$

What is the percent yield, if the quantity of reactants is sufficient to produce $0.86 \mathrm{~g} \mathrm{of} \mathrm{Cl}_{2} \mathrm{O}$ but only 0.71 g is obtained?
3. Using the following reaction:

$$
\mathrm{C}_{2} \mathrm{H}_{2}+\mathrm{Br}_{2}---\mathrm{CHBr}_{2} \mathrm{CHBr}_{2}
$$

If 72.0 g of $\mathrm{C}_{2} \mathrm{H}_{2}$ reacts with 23.5 grams of excess bromine and 729 g of the product is recovered, what is the percent yield of the reaction?
4. Using the following equation: $\mathrm{As}_{2} \mathrm{O}_{3}+\mathrm{C} \rightarrow \mathrm{CO}_{2}+\mathrm{As}$.

If $8.87 \mathrm{~g}^{\text {of }} \mathrm{As}_{2} \mathrm{O}_{3}$ is used in the reaction and 5.33 g of As is produced, what is the percent yield?
5. Using the following reaction: $\mathrm{CS}_{2}+\mathrm{Cl}_{2}---\rightarrow \mathrm{CCl}_{4}+\mathrm{S}_{2} \mathrm{Cl}_{2}$

If 4.3 moles of CS_{2} were to react with 5.6 moles Cl_{2}, what is the limiting reactant? The above reaction produced $211 \mathrm{~g} \mathrm{CCl}_{4}$, what is the percent yield?

