\qquad

Learning Target 8.2: Gas Stoichiometry Worksheet

1. How many liters of propane $\left(\mathrm{C}_{3} \mathrm{H}_{6}\right)$ will undergo complete combustion with 34.0 L of oxygen gas at STP? Ans: 7.5 $\underline{L C_{3}} \underline{H}_{6}$
2. Ammonium nitrate $\left(\mathrm{NH}_{4} \mathrm{NO}_{3}\right)$ is a common ingredient in chemical fertilizers. Use the reaction shown to calculate the mass of solid ammonium nitrate that must be used to obtain 0.100 L of dinitrogen monoxide gas at STP.
$\mathrm{NH}_{4} \mathrm{NO}_{3} \rightarrow \mathrm{~N}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O}$
Ans: $0.357 \mathrm{~g} \mathrm{NH}_{4} \mathrm{NO}_{3}$
3. Determine the volume of hydrogen gas needed to react completely with 5.00 L of oxygen gas to form water at STP. Ans: $10.0 \mathrm{~L} \mathrm{H}_{2}$
4. When solid calcium carbonate is heated, it decomposes to form solid calcium oxide and carbon dioxide. How many liters of carbon dioxide will be produced a STP if 2.38 Kg of calcium carbonate reacts completely? Ans: $533 \mathrm{LCO}_{2}$
5. What volume of oxygen is needed to completely combust 2.36 L of methane gas $\left(\mathrm{CH}_{4}\right)$? Ans: $4.72 \mathrm{~L} \mathrm{O}_{2}$
6. When irons rusts, it undergoes a reaction with oxygen to for iron (II) oxide. Calculate the volume of oxygen gas at STP that is required to completely react with 52.0 g iron? Ans: $15.6 \mathrm{LO}_{2}$
7. Nitrogen and oxygen gases reacts to form dinitrogen monoxide. What volume of O_{2} is needed to produce 34 L of $\mathrm{N}_{2} \mathrm{O}$ at STP? Ans: $17 \mathrm{~L} \mathrm{O}_{2}$
8. An excess of acetic acid is added to 28 g of sodium bicarbonate at $25^{\circ} \mathrm{C}$ and 1 atm pressure. During the reaction, the gas cools to $20^{\circ} \mathrm{C}$. What volume od carbon dioxide will be produced? The balanced equation for the reaction is shown below. Ans: $7.9 \mathrm{~L} \mathrm{CO}_{2}$

$$
\mathrm{NaHCO}_{3}(\mathrm{aq})+\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq}) \rightarrow \mathrm{NaCH}_{3} \mathrm{COO}(\mathrm{aq})+\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})
$$

9. If 5.00 L of hydrogen gas, measured at a temperature of $20^{\circ} \mathrm{C}$ and a pressure of 80.1 KPa , is burned in excess oxygen to form water, what mass of oxygen will be consumed? Assume temperature and pressure remain constant. Ans: 2.63 g
10. The safety air bags in automobiles are inflates by nitrogen gas generated by the rapid decomposition of sodium azide, NaN_{3} :

$$
\mathrm{NaN}_{3}(\mathrm{~s}) \rightarrow \mathrm{Na}(\mathrm{~s})+\mathrm{N}_{2}(\mathrm{~g})
$$

If an airbag has volume of 36 L and is to be filled with nitrogen gas at a pressure of 1.15 atm at a temperature of $26.0^{\circ} \mathrm{C}$, how many grams of NaN_{3} must be decomposed. Ans: 72 g NaN 3
11. In the first step in the industrial process for making nitric acid, ammonia reacts with oxygen in the presence of a suitable catalyst to form nitric oxide and water vapor:

$$
\mathrm{NH}_{3}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{NO}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

How many liters of $\mathrm{NH}_{3}(\mathrm{~g})$ at $850^{\circ} \mathrm{C}$ and 5.00 atm are required to react with $1.00 \mathrm{~mol} \mathrm{O}_{2}(\mathrm{~g})$ in this reaction? Ans: 14.8 L

